What is Decidable about Partially Observable Markov Decision Processes with omega-Regular Objectives
نویسندگان
چکیده
We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions specified as parity objectives. The class of ω-regular languages extends regular languages to infinite strings and provides a robust specification language to express all properties used in verification, and parity objectives are canonical forms to express ω-regular conditions. The qualitative analysis problem given a POMDP and a parity objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1 (resp. positive probability). While the qualitative analysis problems are known to be undecidable even for very special cases of parity objectives, we establish decidability (with optimal complexity) of the qualitative analysis problems for POMDPs with all parity objectives under finitememory strategies. We establish optimal (exponential) memory bounds and EXPTIME-completeness of the qualitative analysis problems under finite-memory strategies for POMDPs with parity objectives.
منابع مشابه
What is Decidable about Partially Observable Markov Decision Processes with ω-Regular Objectives
We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions specified as parity objectives. The class of ω-regular languages extends regular languages to infinite strings and provides a robust specification language to express all properties used in verification, and parity objectives are canonical forms to express ω-regular conditions. The qualitative analysis...
متن کاملQualitative Analysis of Partially-Observable Markov Decision Processes
We study observation-based strategies for partiallyobservable Markov decision processes (POMDPs) with omega-regular objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider the qualitative analysis problem: given a POMDP with an omega-regular objective, whether there is an observation-based str...
متن کاملMultiple-Environment Markov Decision Processes
We introduce Multi-Environment Markov Decision Processes (MEMDPs) which are MDPs with a set of probabilistic transition functions. The goal in a MEMDP is to synthesize a single controller with guaranteed performances against all environments even though the environment is unknown a priori. While MEMDPs can be seen as a special class of partially observable MDPs, we show that several verificatio...
متن کاملDeciding the Value 1 Problem for ]-acyclic Partially Observable Markov Decision Processes
The value 1 problem is a natural decision problem in algorithmic game theory. For partially observable Markov decision processes with reachability objective, this problem is defined as follows: are there strategies that achieve the reachability objective with probability arbitrarily close to 1? This problem was shown undecidable recently. Our contribution is to introduce a class of partially ob...
متن کاملDeciding the Value 1 Problem for $\sharp$ -acyclic Partially Observable Markov Decision Processes
The value 1 problem is a natural decision problem in algorithmic game theory. For partially observable Markov decision processes with reachability objective, this problem is defined as follows: are there observational strategies that achieve the reachability objective with probability arbitrarily close to 1? This problem was shown undecidable recently. Our contribution is to introduce a class o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013